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eXtra Botany
Editorial

The importance of independent replication of treatments in 
plant science

Among other foci, the Journal of Experimental Botany 
aims to advance understanding of plant–environment 
interactions, including abiotic stress, mineral nutrition, 
and the response of plants to global change. Advancing 
understanding in these areas often requires manipula-
tion of the growth environment. Experiments range in 
scale and include: growth chambers (Yiotis et al., 2020), 
glasshouses (Rho et  al., 2019), whole-plant chambers 
(Sharwood et al., 2017), and open-air field experiments 
(Ruiz-Vera et al., 2020). The application of environmental 
manipulations can be constrained by available resources, 
operational costs, and time. In designing experiments, 
researchers attempt to balance logistical challenges 
with the desire to address scientific questions and maxi-
mize statistical power.

Unfortunately, by design or default, pseudoreplication 
(Hurlbert, 1984) remains a problem in plant science. The 
Journal of Experimental Botany expects independent replication 
of experimental treatments, randomized experimental designs, 
and use of appropriate analytical approaches. Here we high-
light the issue for our readers, reviewers, and authors; and re-
mind authors that a full description of the experimental design 
and statistical methods should be included in research papers. 
This is now aided by the journal’s new policy of excluding 
the Materials and methods section from the word count of 
research papers.

What is pseudoreplication and why is it a 
problem?

Pseudoreplication is the collection of what the researcher con-
siders to be independent samples from different treatments that 
they wish to compare, when in fact the samples are not inde-
pendent because they come from a single experimental unit 
(Davies and Gray, 2015). Pseudoreplication is a problem be-
cause: (i) random effects or events affecting just one treatment 
can lead to incorrect conclusions; and (ii) the treatment of sub-
units as independent experimental units artificially inflates the 
statistical significance of numerical differences (Hurlbert, 1984; 
Lindroth and Raffa, 2017; Silk et al., 2020).

Identifying the experimental unit

The experimental unit is the unit to which the treatment has 
been applied (Box 1). Correctly identifying the experimental 
unit is critical, but it is not always intuitive (Lindroth and Raffa, 
2017). The nature of the experimental unit can change with 
scale or experimental design. To illustrate this point, we pro-
vide three examples, where the experimental unit is either a 
field plot (Fig. 1A), a growth chamber (Fig. 1B), or a plant 
(Fig. 1C). Terms such as replicate, repeats, technical replicates, 
biological replicates, semi-biological replicates, treatment rep-
licates, measurements, or samples are often used to describe 
experimental design, but have ambiguous meanings (Zar, 1999; 
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Box 1. Key definitions 

Experimental unit The unit to which the experimental treatment has been applied 

Experimental subunits Subunits contained within the experimental unit that were not independently subjected to the experimental 
treatment.

Degrees of freedom The number of independent pieces of information that are used to evaluate an estimate of a parameter
Type I error Incorrectly identifying a difference between treatments when no real difference exists
Type II error Failure to detect a difference between treatments when there is in fact a difference
Statistical power The probability that a statistical test will correctly reject a null hypothesis when it is false
n The number of experimental units to which the treatment has been independently applied

From Zar (1999), Mead et al. (2003), and Lindroth and Raffa (2017).
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Cumming et al., 2007; Vaux et al., 2012). For example, in Fig. 1B,  
the biological replicate is a subunit, but in Fig. 1C it is the ex-
perimental unit. The statistical evaluation of a treatment effect, 
and the presentation of error bars associated with a treatment, 
should be at the level of the experimental unit (Hurlbert, 1984; 
Cumming et al., 2007; Vaux et al., 2012).

Random effects and events

At the simplest level, there are two basic statistical requirements 
for a good experiment, replication and randomization, or, more 
accurately, interspersion (Hurlbert, 1984; Mead et  al., 2003). 
The hypothetical validity of using unreplicated treatments is 
dependent upon the experimental units being identical at the 
time of manipulation and remaining identical throughout the 
duration of the experiment, except for differences resulting 

from the manipulation (Hurlbert, 1984). Meeting these criteria 
is necessary to ensure that measured effects in an unreplicated 
experiment can be attributed to the manipulation, and not to 
random variation between experimental units. For this reason, 
such validation is practically impossible if n=1 and a treatment 
effect is indistinguishable from random effects (Potvin and 
Tardif, 1988; Cottenie and De Meester, 2003; Vaux et al., 2012; 
Ramage et  al., 2013). Replication of the experimental unit, 
and interspersion—the distribution of experimental units in 
space—provide the best insurance against chance events pro-
ducing spurious effects that could be attributed to the treat-
ment or manipulation (Hurlbert, 1984).

Consider a field experiment (Fig. 1A) with replicated 
(n=5) but undispersed experimental units (plots). In this ex-
ample, all the plots receiving treatment level 1 are located at 
the north end of the field and all those receiving treatment 

Fig. 1.  Experimental design. (A) A research field containing 15 plots; each 5×15 m plot contains 160 individual plants. Three levels of a treatment 
(1=white, 2=black, and 3=grey) were independently applied to five experimental plots (n=5 experimental units). In this experimental design, there is 
independent replication of the levels of the treatment, but no interspersion of those treatments throughout the research field; for example, all five of 
the experimental units associated with treatment level 1 are located in the north end of the research field. This experimental design has three levels of 
one treatment, five independently replicated experimental units per treatment, and 160 subunits (plants) in each experimental unit. (B) An experiment 
where three growth chambers, each with 10 individual plants, are used to investigate the effect of elevated carbon dioxide concentration ([CO2]) on 
growth. Growth conditions of irradiance, vapour pressure deficit, and temperature have the same set points, potted seeds were randomly assigned to 
chamber 1, 2, or 3, and all plants were managed using an identical protocol. The treatment, [CO2], was the only planned difference between chamber 
1 (400 μmol mol–1), chamber 2 (800 μmol mol–1), and chamber 3 (1200 μmol mol–1). This experimental design has three levels of one treatment, there is 
one experimental unit (the chamber) per treatment level, and 10 subunits (plants) within each experimental unit. There is no independent replication of the 
treatment and no interspersion. (C) A glasshouse experiment to investigate the effect of three levels of a micronutrient, indicated by black, dark grey, and 
light grey pots. The researcher was careful to avoid segregation and randomized the location of the treatments within the glasshouse. This experimental 
design has three levels of one treatment, there are eight independently replicated experimental units (plants), and no subunits. Note, there is still a risk 
of interdependent pseudoreplication in this design because although the eight replicates are randomly distributed, they may share a common nutrient 
solution (see example B4 in Hurlbert, 1984).
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levels 2 or 3 are located in the middle and the south end of 
the field, respectively. The problem with this experimental 
design is that unknown differences in land use history or 
drainage between the north and the south end of the field 
could lead to a spurious treatment effect. Even if the field 
had no pre-existing variation, events occurring during the 
experiment could impact the treatments unevenly. For ex-
ample, overspray of irrigation or a pesticide from an adja-
cent field to the north will affect plots used for treatment 
1 to a much greater extent than those used for treatments 
2 and 3. The problems with this hypothetical experimental 
design are well recognized and easily mitigated with alterna-
tive designs, such as a randomized block (Mead et al., 2003). 
Fortunately, the experimental design depicted in Fig 1A is 
rarely encountered in field trials. However, an extreme form 
of this kind of simple segregation often arises when plants 
are grown in controlled environments where logistical con-
straints begin to exert an influence on experimental design.

Consider a growth chamber experiment (Fig. 1B) where the 
effect of elevated carbon dioxide concentration ([CO2]) is in-
vestigated using plant growth chambers set at three different 
[CO2] levels. The experimental design described in Fig. 1B is 
an example of what Hurlbert referred to as isolative segrega-
tion (Hurlbert, 1984), and is unfortunately common in plant 
science. In this example, the researchers have taken care to set 
the environmental conditions of the chambers to be the same, 
except for the CO2 treatment, but the potential for spurious 
effects resulting from uncontrolled or unmeasured effects re-
mains. As with the research field example (Fig. 1A), spurious 
effects can manifest as pre-existing differences between cham-
bers; for example, prior to this experiment, chamber 1 was 
used by another researcher for a plant pathogen experiment 
and not properly cleaned after use, the air intake for chamber 
2 is adjacent to a piece of equipment that generates ozone, or 
a researcher installed different bulbs in chamber 3 that do not 
have the same spectral qualities as those installed in chamber 1 
or 2. Differences can also emerge during an experiment, such 
as a reduction in irradiance in chamber 1 due to a bulb failing, 
or contamination of a CO2 tank with ethylene in chamber 2 
(Morison and Gifford, 1984). Since all the plants for a given 
treatment are located in one chamber, pre-existing or emer-
gent effects that are unique to one chamber are guaranteed 
to affect all of the plants experiencing the treatment assigned 
to that chamber; isolating and segregating the treatments ex-
acerbates the dangers of simple segregation (Hurlbert, 1984). 
Furthermore, isolation in a single chamber increases the risk of 
Type I errors (Box 1) because isolation promotes uniformity 
among the plants within the chamber, reducing variance and 
increasing statistical power.

Note that the principal of interspersion is also important to 
consider when evaluating genetic modifications. Segregation 
and isolation of transgenic plants from their wild-type con-
trols would confound the ability to confidently attribute an 
observed phenotype to the genetic manipulation, and it is 

therefore critical to grow transgenic plants in the same chamber 
as their wild-type control plants.

Statistical considerations

In statistics, a Type I error occurs when a test falsely identifies a 
significant difference between treatments when there is no real 
difference. The specified significance level (α) determines the 
probability of committing a Type I error—when α=0.05, we 
are accepting the probability of incorrectly identifying a dif-
ference between treatments 5% of the time. A Type II error 
(Box 1) occurs when a test fails to identify a difference between 
treatments when it actually exists; the probability of committing 
a Type II error is β. Higher probabilities of committing a Type 
I error are associated with lower probabilities of committing a 
Type II error, and vice versa (Zar, 1999; Mead et al., 2003).

The statistical power (1–β) is the probability of correctly 
identifying a difference between treatments for a given α. Power 
is determined by the following parameters: the difference be-
tween the treatment means; the pooled variance of the treat-
ments; the number of levels of the treatment (k); and the number 
of experimental units (n) (Zar, 1999; Cohen, 1988; Cottingham 
et al., 2005). The resulting degrees of freedom associated with 
the treatment, commonly referred to as the group error degrees 
of freedom (v1, k–1), and the experimental units, commonly re-
ferred to as the error degrees of freedom [v2, k(n–1)] also influ-
ence statistical power. Statistical power increases notably when 
the magnitude of the treatment effect increases, or when vari-
ance decreases, and importantly as n and the associated v2 in-
crease. This was presented graphically by Pearson and Hartley 
(1951) and reproduced by Zarr (1999). Therefore, incorrectly 
treating subunits as experimental units falsely inflates statistical 
power and dramatically increases the likelihood of Type I errors. 
For these reasons, authors are expected to clearly identify the 
experimental unit, and report n, and the degrees of freedom as-
sociated with their experimental design and statistical analysis.

In our growth chamber example (Fig. 1B), the plants within 
each chamber are not independently subjected to the CO2 
treatment and, for the purposes of statistical analysis, cannot be 
considered as true experimental replicates (Box 1). In this ex-
ample, the unit of replication is the chamber, and n=1 for each 
level of the treatment (Cumming et al., 2007; Wernberg et al., 
2012; Johnson et al., 2016; Lindroth and Raffa, 2017).

Common approaches to address issues of 
replication and interspersion

It is common for treatments to be rotated between growth 
chambers during an experiment as a means to reduce the po-
tential for spurious chamber effects (Drag et  al., 2020; Yiotis 
et  al., 2020). For example, researchers running the experi-
ment described in Fig. 1B may attempt to equalize unintended 
chamber effects across the three CO2 treatments by rotating 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/72/15/5270/6329731 by guest on 06 August 2021



Editorial  |  5273

the plants, and their CO2 treatment, among the three cham-
bers during the experiment. This action may indeed reduce the 
possibility for spurious chamber effects, but it does not elim-
inate it as the effect of variation among chambers may have 
a temporal component (Potvin and Tardif, 1988). This could 
be addressed by staggering the treatments so that, in our ex-
ample, all treatments are in each chamber for the same stage of 
growth (Johnson et al., 2016). However, there is still no control 
for what Hurlbert terms ephemeral events or demonic intru-
sion (Hurlbert, 1984). However, whilst chamber swapping may 
serve to minimize the chance of chamber effects impacting the 
results, the practice in no way guarantees it and does not ad-
dress the central problem that the treatments are not independ-
ently replicated (Hurlbert, 1984; Johnson et al., 2016).

Faced with limited resources for plant growth, repeating ex-
periments in time and randomly assigning the treatment to 
growth chambers is one approach that can be used to generate 
independent replication (Johnson et al., 2016). When replica-
tion of treatments in time or space is not possible, alternative 
designs can be considered. A regression approach can be used 
to analyse the response to continuous factors (Cottingham 
et al., 2005). For example, Drag et al. (2020) used a regression 
approach to analyse the effect of an unreplicated gradient of 
[CO2] spanning eight treatment levels. Mixed-effect models 
can account for pseuodoreplication by the use of random 
effects that take into account the hierarchical nature of the 
experimental design (Harrison et al., 2018); however, mixed-
effect models are not a cure for pseudoreplication resulting 
from poor experimental design (Silk et al., 2020) and can only 
help when a treatment has been repeated in more than one 
experimental unit (Johnson et al., 2016). In short, you cannot 
analyse your way out of a poorly designed experiment.

Is pseudoreplication a pseudoissue?

There has been considerable debate over the dogmatic identi-
fication of pseudoreplication and editorial treatment of work 
where it is identified (Oksanen, 2001, 2004; Cottenie and De 
Meester, 2003; Hurlbert, 2004; Davies and Gray, 2015). This de-
bate has been focused on opportunistic experiments resulting 
from natural disturbance, or landscape-scale phenomena. In 
their contribution to the debate, Davies and Gray (2015) em-
phasize the importance and value of publishing such papers, but 
advocate for a cautious approach when reporting results from 
unreplicated natural experiments and for open acknowledge-
ment by the authors when pseudoreplication is an issue (e.g. 
Eastman et al., 2021). However, they also highlight the genuine 
problem of simple pseudoreplication—such as that presented 
in Fig. 1B—in designed experiments (Davies and Gray, 2015).

Key conclusion

The credibility of a study is fundamentally determined by the 
experimental design (Christie et al., 2020). For that reason, JXB 

expects independent replication of experimental treatments 
and also requires a full description of the experimental design 
and the statistical approach so that reviewers and readers can 
properly understand how an experiment was replicated and 
analysed.
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